
AD-R144 270 APPLICATION OF SOFTWARE TEST TOOLS TO BATTLEFIELD ii
AUTOMATED SYSTEMS PHASE..(U) ARMY ARMAMENT RESEARCH AND
DEELPMN CENTER DOVER NJ PRODUC. P E JANUSZ ET AL.

UNCLASSIFIED U 84 ARP, D-TR-84003 SBI-AD-E40i 208 F/G 912 NF7

nowlf~f~lllffff

111.0 W L
UfW EM 132

1.25 11.4 11.6

MICROCOPY RESOLUTION TEST CHART
NATIO#AL BUREAU OF STAN4DARDS-1963-A

.. ~....

AD4401M

* TECHNICAL REPORT ARPAD-TR4003

0

APPLICATION OF SOFTWARE TEST TOOLS TO
BATTLEFIELD AUTOMATED SYSTEMS. PHASE I

PAUL E. JANUSZ
WILLIAM R. TUROCZY

JULY 1984

U.S. ARMY ARMAMENT RESEARCH AND DEVELOPMENT CENTER
PRODUCT ASURANCE DIRCTORATEivem, mwL ' v

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED.

DTIC
L~J ELECTE)

84 08 06 12

,- -- "..-- .- -

The views, opinions, and/or findings contained in
this report are those of the author(s) and should
not be construed as an official Department of the
Army position, policy, or decision, unless so
designated by other documentation.

The citation in this report of the names of
commercial firms or commercially available
products or services does not constitute official
endorsement by or approval of the U.S.
Government.

Destroy this report when no longer needed. Do
not return to the originator.

UNCLAq qFTRD
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

Technical Report ARPAD-TR-84003 _ _ __/_ 7_
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Final
APPLICATION OF SOFTWARE TEST TOOLS TO 16 Sep 82 - 31 Dec 83
BATTLEFIELD AUTOMATED SYSTEMS, PHASE I 6. PERFORMING ORG. REPORT NUMBER

7. AUTNOR(s) S. CONTRACT OR GRANT NUMSER,)

Paul E. Janusz
William R. Turoczy

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

ARDC, PAD AREA & WORK UNIT NUMBERS

Technology & Automation, Information & Mathematics 612105H840011

Div, [DRSMC-QAS-A(D)], Dover, NJ 07801-5001 Task No. VI-2

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

ARDC, TSD July 1984
STINFO Div [DRSMC-TSS(D)] 13. NUMBER OF PAGES
Dover, NJ 07801-5001 42

14. MONITORING AGENCY NAME & ADDRESS(i different from Controllinj Office) IS. SECURITY CLASS. (of this report)
Director
U.S. Army Materials & Mechanics Research Center Unclassified
ATTN: DRXMR-S ISa. DECL ASSI FICATION/ DOWNGRADING

Watertown, MA 02172 SCHEDULE

IS. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

1?. DISTRIBUTION STATEMENT (of the abctrect entered In Block 20, If differmt from Report)

IS. SUPPLEMENTARY NOTES

This project has been accomplished as part of the U.S. Army Producibility and
Reliability for Readiness Program which has as its objectives the improvement
of the life cycle reliability of Army systems through exploitation of emerging
technologies. (cont)

19. KEY WORDS (Continue on reveree aide if neceoaary mid identify by block number)

Test driver Software reliability
Automated tools Requirement verification & validation
Embedded computers System safety
Testing methodologies Integrated logistics support
Battlefield automated systems _

I2L ABTIIIACT (Ct m ,everse MR N n d Idebiy b block numbr)
This report describes the first phase of a multi-phase research and development
automated software test driver project. In recent years, much effort has been
expended by researchers to develop practical software test tools to improve the
reliability and reduce the prodigious life cycle costs of operational software.
Much progress has been made within the last five years, and many of these tools
have now emerged from the research stage to practical products. It is now
feasible to acquire certain candidate test tools, evaluate their utility, and

(cont)
DD W73 a- riNve SOSLT

JA N EDTION OF woves Is oBOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (UWten Date Enlered)

SCUfITY CLASSIFICATION OF THIS PAGE(Wh.. DaWO Bm1.r

18. SUPPLEMENTARY NOTES (cont)

Work generated by Dr. Martin L. Shooman was under contract DAAG29-81-D-10100.

20. ABSTRACT (cont)

demonstrate how they can be used to improve the software development process on
a wide variety of Army projects.

The objective of phase I was to define and classify various categories of soft-
ware test tools. Definitions and a glossary of terms are included for the
reader's convenience. The basic features and principles of operation for test
prcrams are introduced and discussed. It was concluded that these programs
are practical and can be used as prototypes to introduce automated test tools
into the Army software development process.

Based on the practicality of test tool usage and the potential for reliability
improvement and cost savings, phase 2 will continue with the in-depth evaluation
of the two most promising test-driver methodologies. These are the Cyclomatic
Complexity Measure of McCabe & Associates and the Test Coverage Analysis Tool
(TCAT) of Software Research Associates.

UNCLASSIFIED

SECURIITY CLASSIFICATION OF THIS PAGEf'Wen Deaf Entered)

ACKNOWLEDGMENT

Much of the work reported here was generated with Dr. Martin L. Shooman of

the Department of Electrical Engineering and Computer Science, Polytechnic Insti-

tute of New York. The authors would like to thank him for his guidance, assist-

ance, and suggestions regarding the direction of this research work.

Accession For

NTTS 0.4 &1
DTIC TAB
Unnn:7' j.rced

DTIC
E LECTE Dlstributlon/

!u1 7 984) Availability Codes

- AUG 04 Ava'l and/or

Dist SP1ci3.

i/

-. B 10 1 1-~
- ~

,. *..-". -

CONTENTS

Page

Introduction I

Software Development Life Cycle 2
Role of Testing 3
Statement of Problem 4
Purpose 4

Classification of Test Techniques 5

Background 5
Specification Languages 5
Comprehensive Software Development Methodologies 5
Performance Testing 6
Code Walkthroughs 6
Classification of Errors and Test Types 6
Static and Dynamic Testing 8
Set Theory Analyses 8
Graph Theory 9
Structured Testing 9

Evaluation of Test Approaches 10

Comparison of Features 10
Control Graphs 11
Cyclomatic Complexity 11 -'

Test Coverage Analysis Tool 12
Cyclomatic Complexity Measure in Testing 12

Characteristics of Tool 13

User Interface 13
User Friendly 14 -
Output and Graphics 14

Conclusions 15

Recommendations 15

References 17

Bibliography 19

Glossary 25

Distribution List 29

tii

INTRODUCTION

Many of the problems in developing reliable software for complex computer
systems used in battlefield automated systems are related to defining software
requirements. The high costs of software development and poor performance grow
from ambiguous software requirements. The costs are directly related to the
difficulties in defining software requirements, the problems with coordinating a
large programming team, the difficulty of the test and error removal process, and
the subsequent maintenance and enhancement of field deployed software.

At the National Conference on Software Development in Chicago which was
sponsored by the Data Processing Management Association Educational Foundation in

June 1983, Alfred Sorkowitz reported that the yearly cost of software developed
in the United States was estimated to be over 20 billion dollars. (Other esti-
mates from recent years ranged from 16 to 32 billion.) Furthermore, the Govern-
ment Accounting Office studied nine federal software projects and determined that

only approximately 2% of the software had been used as delivered to the govern-
ment.

The Department of Defense has recognized the software testing problem, and
document DoDD 5000.3 (Test and Evaluation) was established primarily to enforce
the need for demonstrating software quality (refs 1-3). Special emphasis was

placed on the testing, and evaluating of software. Within DoDD 5000.3, the fol-
lowing four points are worth noting since they strongly relate to testing in the

software development process:

1. Quantitative and demonstratable performance objectives shall be es-
tablished for each software phase.

2. The decision to proceed to the next phase shall be based on quanti-
tative demonstration of adequate software performance using test and evaluation.

3. Prior to release for operational use, software shall be operation-
ally tested under realistic conditions to provide a valid estimate of system
effectiveness and suitability in the operational environment.

4. Operational test and evaluation agencies shall participate in early
stages of software planning and development to insure adequate consideration of
the operational environment and objectives.

This study, directed at an examination of test tools, was encouraged by the
recent progress on these tools (refs 4-6). The objective was to investigate the
development of standardized methodologies for the design of software test driv-
ers.1

Test drivers are software programs which provide data for exercising and

testing software that has been completed or is under development.

1

The long-term goal of this project is to develop standard methodologies and

test drivers for the Army and perhaps other Department of Defense (DoD) agencies
in order to assure that a uniform level of confidence for the software quality
beyond the critical function stress tests is achieved. Stress testing is related
to boundary value analysis which is a selection technique in which test data are
chosen to lie along "boundaries" or extremes of input domain (or output range)
classes, data structures, and other procedure parameters. Choices for data often

include maximum, minimum, extraordinary, and degenerate values of parameters. As
the long-term goal becomes achievable, there is a strong probability that a

higher percentage of software will be used in the field with minor error correc-
tions within the software development life cycle process.

The initial scope of work for this research project was prepared and sub-
mitted for approval in the last quarter of FY82. Briefly, the project funding
levels were revised and an initial funding request was approved. In order to
complete the first phase of the project, funds were approved for in-house govern-
ment support and an additional amount was granted for outside consulting serv-
ices.

The first phase was an investigation of the test driver literature and po-
tential automated tools to explore, while the second phase is an experimentation
with selected tools that will be evaluated for effectiveness in the software

quality assurance functions for battlefield automated systems. This report pre-
sents the information discovered during the first phase of the research
project. Proposals are being submitted for continued funding for the second
phase.

Software Development Life Cycle

Software can be defined as the computer programs and data required to enable
conputer hardware to perform computational or data manipulation functions. Soft-
ware is used in various environments including battlefield automated systems that
are being investigated. Such software may include operational embedded software
which is used for system performance, built-in-test, or test program sets which
are used for the identification of malfunctions in the software and maintenance
activities.

A simplified software life cycle for battlefield automated systems can be .

broken down into the following stages:

1. Conceptualization
2. Requirements defined
3. High level design
4. Detailed design
5. Implementation of design
6. Code testing

7. Requirements testing
R. Software maintenance

2

Throughout the system life cycle, there are various phases for testing,

verifying, and validating the software. Test drivers can be used in these vari-
ous cycles or phases of project development. For example, coding or requirements
testing is an ideal phase for verifying and validating software. In addition,
the software maintenance phase is critical in the software devei .ament life

cycle. Test drivers are necessary in software quality assurance functions in
order to reverify and revalidate software changes. They are used in regression

testing and developing test beds for software qualification and acceptance.

Role of Testing

Testing is described by individuals in different ways. For example, Webster
uses the terms "critical examination, observation, or evaluation" when he defines
testing. Other researchers and authors described testing from different perspec-
tives. Glenford Myers (ref 7) explains testing as the process of executing a
program with the intent of finding errors. Michael Deutsch (ref 8) perceives
testing as the controlled exercise of program code in order to expose errors, and
Goodenough defines testing as a process inferring behavioral properties of a
program based on the results of executing the program in a known environment with
selected inputs.

More technially, Killer and Howden (ref 4) explain that a unit test of a
single module consists of a collection of settings for the input space of the

module and exactly one invocation of the module. A unit test may or may not
include the effect of other modules which are invoked by the module undergoing

testing.

The role of testing in a DoD environment is to verify and validate the dem-
onstration of computer program requirements for system performance. Verification
can be defined as the process of assuring the consistency and completeness of the
current phase with the previous phases of the system life cycle development pro-
cess. Validation is the assessment of the final software product through test,
evaluation, and demonstration to measure how well the software conforms to the
established requirements.

More specifically, the role of testing is very important in DoD projects and
is used throughout the life cycle management of the software. Testing ultimately
is used in formal qualification testing and acceptance. This later phase in the
life cycle process is used as a prerequisite for final acceptance of the software
technical data package which contractors submit to DoD agencies for approval.

The following classification schemes for test techniques are discussed:
performance testing, code walkthroughs, classification of errors and test types,

static and dynamic testing, set theory, input-output space, graph theory, and

structured testing.

3

Statement of Problem

The present underlying problem in software development in DoD agencies is
that much of the software developed by contractors and delivered to the govern-
ment has a very low probability of being used as delivered. This problem can be
broken down into many steps and subproblems related to the life cycle management
process. Clearly defining' software requirements early in the project is one
subproblem. Others can be identified when the life cycle management process is
studied more closely. The background and details of the DoD life cycle process
are given in reference 9.

This research focuses on the testing aspects of software development and
assumes that requirements are clearly stated and defined for the computer pro-
grams being developed. The approach taken was to define a technical objective
related to software test driver development and reliability for readiness. The
objective of this research was to develop standardized methodologies for the
design and use of software test drivers which make it possible to assure a uni-
form level of confidence for the software quality beyond the critical function
stress tests.

The following section presents research which classifies various test tech-
niques and provides background for a basic underst*,Ading of the current litera-
ture available.

Purpose -

A test driver is a simulated program which passes data to the module under
test and receives data which the module has processed. Test drivers are fre-
quently used to test software and demonstrate that the developed software con-
forms to system requirements. Investigation and development of a standardized
methodology for the design of software test drivers is needed to assure a uniform
level of confidence for software quality. This research project was initiated to
explore existing methodologies and evaluate their strengths and weaknesses. The
technical goal is, therefore, to discover an optimum system testing procedure
whereby a standardized testing baseline can be established. If successful, the
Army and the Department of Defense will be able to use this standard methodology
in the development of reliable software for battlefield automated systems, com-
bining academic expertise with practical structured testing methods.

The program plan consisted of the following key tasks (table 1) which were
accomplished during phase I:

1. Prepare plan for phase I
2. Initiate prebidders conference for consultant selection
3. Review meetings with expert consultant
4. Conduct literature search on test drivers
5. Identify experts in software testing arena
6. Identify significant parameters
7. Review and finalize current models

4

8. Determine applicability of models
9. Determine limitations of models

10. Analyze models and prepare recommendations -

11. Prepare technical report

Phase I identifies significant testing models that were evaluated to opera-
tionalize a standard approach in the development of test drivers to assure high
quality software. Phase 2 will address the implementation of phase 1 and iden-
tify a transition team of researchers who will pursue further "hands-on" develop-
ment work. -

CLASSIFICATION OF TEST TECHNIQUES

Background

Over the last decade, many different test techniques have emerged. At pres-
ent, there is no superior technique; however, most of the commercial and experi-

mental test programs are based upon one or two approaches to testing. Therefore,
even if these early commercial test products are imperfect, the approaches upon
which they are built must be classified as the most advanced in a practical
sense. It is realized that these approaches must have potential if developers I

have invested significant funds. Some practitioners have used these tools with
success, and many others are experimenting with these programs.

Some recent progress has been made in characterizing and defining the vari-
ous test approaches (refs 4 and 6).

Specification Languages

Since many of the errors which occur in a project are due to ambiguous or
imprecise specification of the problem, various researchers have been working on
languages which would make the specification process more precise. Most of these
techniques combine a formal specification langage with some aspects of an inter-
active definition mode on a computer and are interspersed with English language,
comments, and some analysis capability.

The analysis generally attempts to check for completeness, consistency, and
ambiguity of the definitions, constraints, and statements in the specification
language. Some of the best developed techniques are the A-7 specification tech-
nique (ref 10) and the problem statement language and analyzer (PSL/PSA) (ref
11). Most large software developers now use some type of pseudo-code based pro-
gram design language (PDL).

Comprehensive Software Development Methodologies

Other researchers have approached the problem of errors which occur between
the problem description and the coding phases. This is done by providing a com-
prehensive tool which allows the researcher to go from the basic concept of the

5

problem to a specification and then automatically generate code based upon the
rigorously defined specification. Such techniques are best described by refer-
ence to particular examples of methodologies, e.g., the Higher Order Systems
(HOS) methodology (refs 12, 13), and the software requirement engineering method-
ology (SREM) (ref 14).

Performance Testing

The term performance testing normally applies to the definition, modeling,
and measurement of the computer or computer system. Typical measures that are
used are millions of instructions per second (MIPS), millions of floating point
operations per second (MFLOPS), and jobs processed per minute. Analysis of this
last measure includes the load on a multiprocessing or time-sharing system, the
task assignment, and queuing aspects of the operating system.

Code Walkthroughs

A code walkthrough is an informal design review. The participants are a
lead programmer, the designer of the code, and possibly one or more pro-
grammers. The procedure involves the program designer's explaining his design,
the underlying algorithms, and the code to the remainder of the group. Some
combination of flow charts, pseudo code, or other design representation, along
with a blackboard presentation or overhead transparencies are used to explain the

code design. The main advantage of this technique is that several people inter-
act, and the process minimizes the great tedium and boredom of code reading.

Classification of Errors and Test Types

From the literature reviewed, various categories of errors have been identi-

fied. These errors can be type classified into the following areas:

1. Logic

2. Documentation errors

a. Code

b. Specifications

c. Unit development folders

3. Overload or overflow of range

4. Timing errors

5. Throughput

6

6. Recovery errors

7. Support software errors (test program sets)

8. Hardware errors

. 9. Specifications and requirements

10. Compilation errors

11. Interface errors (software)

12. Data or data base errors

13. Incorrect reporting

Errors can be identified by various methodologies and testing strategies can
be developed. Each testing method has advantages and disadvantages for various
types of errors discovered. Universal test methods and procedures may be very
difficult to standardize. An effective approach to testing may involve a feed-

back process where various strategies of testing are performed, results analyzed

and then modified based on the particular errors that are discovered. This pro-
[. cess of interactive testing, analyzing, and retesting based on types of errors

detected, may be the most cost effective procedure to investigate in test driver
formulation.

Classes of testing are associated with various errors. Classification can
be segmented into the following types:

1. Type 0 - All instructions in code executed at least once (check
list)

2. Type 1 - All paths force-executed at least once (simulated 100%

coverage)

3. Type 1.5 - All paths force-executed, some naturally executed

4. Type 2 - All paths naturally executed at least once (path coverage

100%)

5. Type 3 - All paths naturally executed for all values of input param-
eters (exhaustive test)

6. Type 4 - All paths naturally executed for all values of input
parameters, all sequences of inputs, and all combinations of initial
conditions (exhaustive test for multiprocessing, multiprogramming,
and real time systems with nonfixed input sequence)

A more complete discussion of these classifications of testing is given in
reference 15.

7i

Static and Dynamic Testing

At the present time there are several testing methodologies, one of which is
static testing. A static analysis is defined as a direct analysis of the form
and structure of a product without executing the product (ref 16). This may
include code inspection techniques, code walkthroughs, or symbolic analysis.
Natural inputs are not applied to the program since this form of testing does not
involve execution or run-time. This strategy in testing may be viewed as an
extention of the compilation process (ref 4). Static testing can also be thought
of as making certain allegations about the program and then proving these allega-
tions. Once the discovered errors are corrected and static testing is completed,

the next phase may include dynamic testing.

Dynamic testing involves execution or simulation of a development phase
product. It detects errors by analyzing the response of a product to sets of
input data (ref 16). In addition, dynamic testing is used for software qualifi-

cation in the production phase of the life cycle. Dynamic testing is described
in terms of the following four elements (ref 4):

I. Set an objective for the test which will usually show that the pro-
gram is running according to the design requirements.

2. Set up appropriate input data for testing objectives.

3. Review output and results according to test objectives.

4. Develop measurements which quantify results and knowledge obtained
about the program by executing the program.

By executing the program in a controlled environment, dynamic testing is
used to demonstrate that errors are detected and eliminated. It assures that the
program operates in the required fashion to detect unwanted or unnecessary func-

tions.

Set Theory Analyses

Another testing methodology uses the concepts of set theory. There are
generally two "solution" spaces, one for input and the other for output. The

methodology involves mapping each element of the input space into a corresponding
output space. The concept is that each input and output should be accounted for,
and there should not be one without the other. If such an input or output is

found to exist, it means that either a mistake in program logic exists (unneces-
sary data), or possibly an "added feature" is present. The solution spaces can
also be broken down into corresponding domains, subsets, or subspaces.

This testing methodology is described in reference 17 in detail. Briefly,
the subset or subspace is usually one of the program's paths. By using this

methodology, certain classes of errors and programs can be defined. Errors in-

clude domain errors, computation errors, and subcase errors. Programs may be
reliable, almost reliable, feasible, or infeasible. (For further details on the
methodology, see reference 17.)

8

A methodology called functional program testing is described in reference 19
and is similar to the one just mentioned. According to this methodology, a pro-
gram is viewed as a collection of functions each having input values for its
variables and corresponding output values. The domains for the input and output
are formally specified. The data contained within each of these domains corre-

sponds to various functions and they may have one or more important properties.
Test data are determined by considering these properties and reviewing the de-
fined domains. (For additional depth on functional program testing, see refer-

ence 18.)

Graph Theory

Graph theory describes program logic by mapping data flow and control by
means of flow charts and data flow diagrams. The flow chart is used to define
program paths and derive test cases to test these paths. An automated method
which develops an optimal set of test cases where all branches of the source code
are exhaustively tested is described in reference 19. This process uses a mini-
mum set of paths which cover all logical branches of the module. The testing

process shows whether or not the program successfully performs its intended func-
tion in an acceptable fashion (e.g., efficiently, timely) for every combination
of input variable values and every conceivable program path given.

The graph theory method consists of the following procedures: The source
code is analyzed for its syntax. Certain branch conditions are identified as

being incompatible. These incompatibilities may render a path unexecutable and
they can be eliminated. However, some branch conditions may not be detected.
This may require that the user input some information. The user then generates
test data which will exercise all paths. A path which contains the maximum num-
ber of branches not yet exercised is identified. A test case to drive this path
is generated in order to exercise the path. The process is repeated until all of

the branches are exercised. Additional information on this methodology can be

obtained from reference 19.

Structured Testing

The test methodology of structured testing relates to the concepts of graph
theory. McCabe & Associates (ref 20) have done extensive work in this field. By
determining the data flow diagram for a program under study, McCabe has developed
a metric which gives an indication of the complexity of the program. The value
of the complexity metric gives the minimum number of distinct paths (basis paths)
which must be tested to assure software reliability. If the module or procedure
has a cyclomatic complexity greater than ten, then the module is more likely to
have errors. Furthermore, the module will be more difficult to understand, test,

and debug. In addition, inherent timing problems may result, and the module will
be difficult to maintain. To assure ease of understanding and testability, mod-
ules should be broken down into simpler components, each having a complexity of
ten or less.

9

.° . .

Modules or redesigned modules should be:

1. Testable in the sense that the testing effort can be managed prop-
erly.

2. Comprehensible so that the user can easily read and understand what
is being done.

3. Definable so that it may be used in another system.

4. Maintainable to facilitate proper management.

EVALUATION OF TEST APPROACHES

Comparison of Features

The various test techniques which were introduced cannot be applied to all
phases of software life cycle development with equal ease or validity. A compar-
ison of the effectiveness of these various approaches and features appears in
table 2.

The following main points from the table should be considered:

1. Many of the techniques involve a human analyst interacting with
other key personnel during the life cycle management process or examining some --

stage of the development cycle. The elimination of the human factor element from
the testing process cannot be envisioned. However, the most desired objective is
to develop an automated tool or technique which will provide an additional means
of finding errors and reducing the effort and the large number of manhours in-
volved in testing a large program in battlefield automated systems.

2. The first priority would be to reduce further work on code reading,
code walkthroughs, design reviews, program proofs, set theory analysis, and func-
tional program testing since these areas are too complex and impractical for
automation.

3. Much work is already in process on specification languages and com-
prehensive methodologies. At a later stage, these avenues will be explored fur-
ther based upon state-of-the-art progress.

4. Since structured testing and test path approaches have been auto-
mated, they appear to be the most promising approaches for phase 2. Some of the
features of symbolic testing have been incorporated in the programs which exer-
cise test paths. Current trends in software development packages indicate that
programming languages such as PASCAL and Ada are being used for current Depart-
ment of Defense projects. These structured programming languages and techniques
are forcing contractors to develop structured testing methodologies in order to
qualify their software packages.

10

Based on these ideas, the following sections present the linkage between
structured testing and automated tools. Structured testing is further elaborated
upon with respect to the cyclomatic complexity metric developed by McCabe &
Associates, Inc. The automated tool considered for further evaluation fo: phase

2 is the Test Coverage Analysis Tool (TCAT) developed by Software Research Asso-
ciates.

Control Graphs

Some of the most promising software test tools developed to date are related
to path testing of the software. The simplest way to define software paths is to

refer to the control graph for the software. An approximate notion of the con-
trol graph can be quickly obtained if the flow chart for the software is consid-
ered. If each start-stop oval, processing box, input-output rhombus, and deci-

sion diamond are replaced by a small circle, then the nodes of the graph are
defined. The flow lines in the flow chart that form the branches of the graph
are retained. (In mathematical terms, the nodes and branches are called vertices
and arcs.) In general there are two types of graphs, directed (digraphs) and
nondirected. In a directed graph, the branches can only be traversed in the
indicated arrow direction. In an undirected graph the branches can be traversed
in both directions. If computer programs are modeled, directed graphs must be
used.

Computer programs are initially considered without loops, therefore the flow
charts do not have loops, nor do the associated control graph. If only struc-

tured programs are considered, then loopless programs contain only SEQUENCE and
IF THEN ELSE control structures and do not contain DO WHILE control structures.
Such a control graph contains only two-way brances at each IF THEN ELSE struc-
ture, which creates the paths. A path is a unique sequence of branches which
connects the start and stop nodes in such a graph. A path test would generate
test data to drive the program down all or some subset of all the graph paths.

If program loops (add DO WHILE or DO UNTIL) control structures in the code
are allowed, the flow chart and the associated control graph will contain
loops. Loops make the definition of paths more difficult, since every additional
"trip around a loop" will create a new path. To avoid this problem, a loop in a
program is defined as generating two paths: one is when the WHILE condition is
initially false, and the loop is not executed; the other is when the loop is
executed only the first time (ref 6).

Cyclomatic Complexity

A complexity measure for the control structure of a computer program by
adapting graph theory was devised by McCabe (ref 20). This is known as the cy-
clomatic complexity of the graph and is related to the number of "independent"
loops in the graph. The complexity can be calculated in several fashions, one of
which is by adding unity to the difference between the number of branches and the
number of nodes of the graph (refs 6 and 20).

11

"I

McCabe further relates the cyclomatic complexity to the minimum number of
test paths which are needed to cover (pass through) all the branches in the graph
of the program. This technique can b- implemented to generate the minimum set of
tests for exercising the program and assuring software reliability (refs 6 and
20).

Test Coverage Analysis Tool

A test tool called Test Coverage Analysis Tool (TCAT) has been developed and
marketed by Edward Miller of Software Research Associates.2 This tool is based
on path testing and generates a set of test conditions which drives the program
down its various paths. Miller claims that although the tool will not generate

test conditions for all the program paths, it will find and test up to 85% of the
paths (test coverage of 0.85) in examples which he has investigated. It also
provides a static analysis of the program along with the dynamic path testing.

This tool is available in several versions which run on a few different
computers. TCAT appears to be one of the more advanced and flexible tools which
are commercially available. Because of these strengths, it is recommended that
one or more versions of TCAT be acquired for phase 2 of this research project,
and that its capabilities and limitations be thoroughly explored.

Cyclomatic Complexity Measure in Testing

McCabe's cyclomatic complexity measure can be used to supplement a path
testing program such as TCAT. The cyclomatic complexity can be computed and used
as a lower bound on the number of path tests necessary for testing the program in
question. It is advantageous to know if there are tens, hundreds, or thousands

of test paths necessary before TCAT or similar test programs are used.

Another use of the cyclomatic complexity measure is in code inspection. A
* large number of programs and program modules can be submitted to a cyclomatic

complexity analysis program and the various programs ranked with respect to their
cyclomatic complexity. Rewriting or further study of the most complex programs
in the group would then be considered.

Many private concerns are using automated tools to aid in their software
development and analysis. For example, Ultrasystems from Irvine, California, has
a number of automated tools in operation. One tool is a JOVIAL Code Analysis
Program (JCAP). JCAP is a static analysis tool which provides information on

standards auditing, structure analysis, data usage, flow analysis, and complexity
metrics. Similar to JCAP, an Assembly Code Analysis Program (ACAP) is available
to use for static analysis of assembly code.

2 Correspondence between Miller and authors.

12

" 7

Another automated tool which is still in development by Ultrasystems is
Multi-Language Static Analysis Tool (MSAT). The MSAT program structure analysis
provides information on procedure structure call charts, intramodule charts, and
nesting level of procedures. The data flow analysis examines module coupling
analysis, global cross reference, constant usage, data usage, input/output re-
ports, intramodule input/output reports, module strength analysis, and program
stability analysis. The MSAT auditing tool investigates standards compliance.

, It provides complexity metrics and error analysis which do global data checks,
constant checks, and provide reports on system completeness, procedure complete-
ness, and procedure usage errors. The MSAT tool provides general system informa-
tion on listings, procedure maps, assembly percentages, comment percentages, and
abstracts. It is being developed to examine software changes. Code change anal-
ysis and structure change analysis will be provided in the MSAT tool. According
to Ultrasystems, this tool is still under development but may be completed within
a year.

Cyclomatic complexity analysis is also used in business application pro-
grams. AT&T in Warrenville, Illinois has expanded their software quality assur-
ance group in order to provide feedback to designers of software programs on
errors detected through cyclomatic complexity analysis and other automated test
tools.

CHARACTERISTICS OF TOOL

After reviewing additional testing methodologies and techniques, general
characteristics for a potential generic automated tool were formulated. Attri-
butes to consider are:

1. User requirements and wants
2. Tool objectives
3. Tool usage

4. Tool languages
5. Primary features

6. Cost

As a pilot study, a simple problem was analyzed to determine characteristics
of an automated tool. This analysis was performed manually, keeping in mind the
process involved and how the computer/tool could be used to perform the same
task. The steps followed in this procedure consisted of developing a flow chart,
enumerating the number of paths, labeling the paths by some means to distinguish
one from another, and generating data to drive a certain path.

User Interface

In developing a generic tool, the question of user interface comes to
mind. The tool could be adaptable to a number of program languages. This would
depend on the r !sources and/or hardware system capabilities available to the
user. The coordination between user requirements and company policies needs to

13

7I

be considered. To facilitate the use and management of the tool, a user's manual
should be provided with typical examples including a complete record of the test
procedures. Preferably, there should be a concise version of the user's manual
on an interactive computer terminal which includes a user friendly HELP program
menu.

User Friendly

One practical aspect of the tool would be to make it user friendly. User
menus and prompts can guide the user through tool usage with a simplified set of
Instructions. Having the user interact with the tool would make it convenient
and easy to understand what has been done or what will be done. It can also give
some indication as what to do next. This feedback process allows software to be
examined and changed easily. For example, if the program is too complex and the
number of paths too large to test, the tool could ask the user to pick a particu-
lar path he might want to test. It might also ask the user if a retest were
needed. This potential retest option would increase user confidence in tool
reliability through the retest enhancement. The tool could have the ability to
give feedback on critical paths that should be taken next and what input should
be used to exercise the path. In addition, an automatic data generator could
drive the desired path.

Output and Graphics

Probably one of the most important features of the tool would be output. It
may discuss the number of paths in the program, the labeling of these paths, the
percentage of paths tested, how many times each of the paths was tested, or the
relative complexity of the program. The output should be in a format which is
easy to interpret and comprehend. The use of graphics would simplify this pro- -
cess. A tree diagram or flow chart could be used to illustrate program logic or
data flow. This could easily show the various paths of the program. By number-
ing or lettering the nodes and/or decision points, the various paths can be de-
fined. When a path is executed, the output could consist of the numbers or let-
ters to delineate the program path. If graphics are involved, the particular
path could be highlighted by means of colors, dashed lines, or some other conven-
ient method. A bar graph may be used to show the various paths and the relative
frequency or percentage of times each path was tested and/or executed.

Software Research Associates has several software testing support tools.
TCAT 3 illustrates the tool characteristics mentioned above. It is UNIX-based and
available in COBOL, RATFOR, SRTRAN, and BASIC. The tool analyzes the program and
defines modules and segments. The tool tests approximately 85% of the paths and

*. also tests the inputs and outputs of the program. One of the outputs consists of

3 Correspondence between Ed Miller and authors.

14

listing each module and identifying the segments, if any, which are not exer-

cised. The TCAT Summary Test Coverage Report lists the following critical items:

1. Module name
2. Number of segments
3. Number of invocations
4. Number of segments exercised
5. Percentage covered

On the TCAT Histogram Report, the segment number and the number of execu-

tions of the segment are given and displayed in a histogram format. Many other
leading companies have similar tools which are commercially available; however,

researchers need to be very selective in purchasing automated tools.

CONCLUSIONS

The objective of phase I was to investigate the developing standardized
methodologies for the design of software test drivers. Test drivers are neces-

sary to assure a uniform level of confidence for the software quality beyond the
critical function stress tests. These standardized test drivers are being con-
sidered for use in battlefield automated systems within the Department of

Defense.

A literature survey and personal interviews with leading software devel-
opers, such as AT&T and Ultrasystems, were conducted. Static and dynamic testing
methodologies were investigated with respect to the advantages and disadvan-
tages. As a result, a standardized automated tool for each application seems

highly unlikely. Therefore, a generic strategy for developing a standardized
test driver needs further investigation.

RECOMMENDATIONS

It is recommended that the most promising test driver methodologies be exam-
ined in phase 2. These include the Cyclomatic Complexity Measure of McCabe &

Associates, Inc. and the Test Coverage Analysis Tool (TCAT) of Software Research

Associates.

The long term objective is to develop a standard methodology that can be
automated as a generic tool (test driver) to be used in Army and Department of
Defense Software Quality Assurance Centers to increase software reliability.
Strategies for tailored automated test drivers will be generated to assure in-
creased confidence in software development throughout the life cycle of the bat-
tlefield automated system. To achieve this objective, continued research is
proposed to supplement this effort. The planning for the next phase of the re-
search is broken down into the following steps:

1. Investigate tools that are available, purchase the tools, and verify
that the tools actually perform their intended function. In essence, check the

15

• I.

tools for content validity. As a result of this research, several tools can be
validated and used. As previously mentioned, Software Research Associates have
several automated tools. Other industries which have similar tools include
Boeing, McDonnell Douglas, IBM, Bell Laboratories, and Softool. Within the gov-
ernment, the Federal Software Testing Center in Washington, DC has additional
software tools available; however, not all of these tools are commercially avail-
able.

2. Study the fundamentals of the tool. This would consist of determin-
ing how the logic diagram, flow chart, or paths are defined. Basic factors such
as what inputs are necessary to exercise a particular path and how to interpret
the output are important. The result is a basic understanding of how the tool
operates and experiencing its limitations.

F 3. Introduce a representative set of errors into the program. Since it
is difficult to seed errors, an obsolete program with known errors can be used to
check the validity of the tool. This effort would build on steps one and two.
Knowledge and insight gained would help users to understand the fundamentals of
the tool. Additional significant findings are then documented in the updated
user's manual.

4. Summarize the research by modifying and consolidating the lessons
learned from selected tools and create a prototype test driver.

5. Revise the user's manual for the tool. It is assumed that the tools
are written by experts for use by experts. A user's manual would be developed in
order that the user could fully understand the basic ideas, applications, and
practicality of the tool in Army and DoD environments.

16

. I | | i-Il n

REFERENCES

1. MIL-STD-1679, Weapon System Software Development, December 1, 1978.

2. DARCOM-R 70-16, Management of Computer Resources in Battlefield Automated
Systems, July 16, 1979.

3. AMC-R 700-38, Test and Evaluation Incidence Disclosed During Material Test-
ing.

4. Edward Miller and William E. Howden, Tutorial: Software Testing and Valida-
tion Techniques, second edition, IEEE Computer Society, cat. no. EHO 180-0,
IEEE, New York, 1981, 499 p.

5. J. T. McCabe, "A Complexity Measure," IEEE Trans. Software Engineering, vol.
SE-2, no. 4, December 1976.

6. Martin L. Shooman, Software Engineering: Design, Reliability, and Manage-

ment, McGraw Hill, New York, N.Y., 1983.

7. Glenford J. Myers, Software Reliability Principles and Practice, 1976. --

8. Michael S. Deutch, Software Verification and Validation--Realistic Project
Approaches, Prentice-Hall, Englewood Cliffs, New Jersey, 1982.

9. William R. Turoczy, "Software Quality Assurance (SQA) Life Cycle Management
Course Notes and Info," ARDC, Dover, New Jersey, January 1984.

10. Robert A. Parker, et al., "Abstract Interface Specification for the A-7E
Device Interface Module," NRL Memo. Report 4385, November 20, 1980.

11. Daniel Teichroew, "ISDOS and Recent Extensions," Proc. Symp. Comp. Software
Eng., Polytechnic Press, Brooklyn, New York, 1976, pp 75-81.

12. H. Hamilton and S. Zeldin, "The Relationship Between Design and Verifi-
cation," J. Sys. and Software, vol 1, Elsevier North-Holland, Inc., New
York, 1979, pp 29-56.

13. Higher Order Software, Inc., The FAME Configuration Reference Manual, HOS,
Cambridge, Massachusetts, December 1981.

14. Thomas Bull, David Bixler, and Margret Dyer, "An Extendable Approach to
Computer Aided Software Requirements Engineering," IEEE Trans. on Software

Engineering, vol SE-3, no. 1, January 1977, pp 49-59.

15. D. L. Baggi and Martin L. Shooman, "Software Test Models and Implementation
of Associated Test Drivers," Report SRS-116/Polytechnic Institute of New
York, November 1979.

17

"V.I i.

16. U.S. Department of Commerce, National Bureau of Standards, "Software Valida-
tion, Verification, and Testing Technique and Tool Reference Guide," NBS
Special Publication 500-93, September 1982.

17. William E. Howden, "Reliability of the Path Analysis Testing Strategy," IEEE
Transactions on Software Engineering, vol SE-2, no. 3, September 1976.

18. William E. Howden, "Functional Program Testing," IEEE Transactions on Soft-
ware Engineering, vol SE-6, no. 2, March 1979.

19. K. W. Krause, R. W. Smith, and M. A. Goodwin, "Optimal Software Test Plan-
ning Through Automated Network Analysis."

20. U.S. Department of Commerce, National Bureau of Standards, "Structured Test-
ing: A Software Testing Methodology Using the Cyclomatic Complexity Met-
ric," NBS Special Publication 500-99, December 1982.

18

BIBLIOGRAPHY

1. D. L. Baggi and Martin L. Shooman, "An Automatic Driver for Pseudo-
exhaustive Software Testing," Digest of Papers COMPCON '78, IEEE, New York,
February 28, 1978, p 278.

2. Boris Beiser, Software Testing Techniques, Van Nostrand and Reinhold Co.,
New York, 1983.

3. L. E. Bonanni and A. L. Glasser, "Source Code Contt'l System Programming
Work Bench Unix (SCCS/PWB/UNIX) Manual," Bell Laboratories, Holmdel, New

Jersey.

4. Fredrick P. Brooks, Jr., The Mythical Man-Month, Addison-Wesley, Reading,
Massachusetts, 1975.

5. Robert C. Bruce, Software Debugging for MicroComputers, Reston Publishing
Co., Reston, Virginia, 1980.

6. Data and Analysis Center for Software, "A Bibliography of Software Engineer-
ing Terms," Rome Air Development Center, RADC/ISISI, Rome, New York, October
1979.

7. Rajat K. Deb, "On Generation of Test Data and Minimal Cover of Directed
Graphs," Proc. IFIP Cong. 1977, August 8-12, 1977, pp 13-16.

8. Tom Demarco, Structured Analysis and System Specification, Prentice-Hall,
Englewood Cliffs, New Jersey, 1979.

9. T. A. Dolotta and J. R. Mashey, "An Introduction to the Programmers Work-
bench," Proc. 2d Int. Conf. Software Eng., IEEE, New York, October 1976, pp

164-199.

10. T. A. Dolotta, et al, "The LEAP Load and Test Driver," Proc. 2d Int. Conf.
Software Eng., IEEE, New York, October 1976.

11. 0. E. Ellingson, "Computer Program and Change Control," Rec. 1973 IEEE Symp.
Comp. Software Reliability, IEEE, New York, pp 80-89.

12. W. R. Elmendorf, "Cause-Effect Graphs in Functional Testing," Report TR-
00.2487, IBM Systems Development Division, Poughkeepsie, New York, 1973.

13. Doug Ferguson and Leon F. Young, "Structured Analysis and Testing of Divad
Embedded Software."

14. D. R. Giloty, et al., "System Testing and Early Field Experience," Bell Sys.
Tech. J., vol 49, December 1970.

15. Robert L. Glass, Software Reliability Guidebook, 1979.

19

p.

16. Robert L. Glass and Ronald A. Noiseux, Software Maintenance Guidebook, Pren-
tice-Hall, Englewood Cliffs, New Jersey, 1981.

17. Alan L. Glasser, "The Evolution of a Source Code Control System," Proc.
Software Quality and Assurance Workshop, ACM, New York, November 1978, pp

122-125.

18. M. D. Godfrey, et al., Machine Independent Organic Software Tools (MINT),
Academic Press, New York, 1980.

19. K. A. Heller, et al., "System Testing," Bell Sys. Tech. J., vol 49, no. 10,
December 1970, p 2711.

20. William C. Hetzel, ed., Program Test Methods, Prentice-Hall, Englewood
Cliffs, New Jersey, 1973.

21. Higher Order Software, Inc., The FAME Configuration Reference Manual, HOS,
Cambridge, Massachusetts, December 1981.

22. IEEE Computer Society, Proceedings Soft Fair - A Conference on Software
Development Tools, Techniques, and Alternatives, IEEE Computer Society, cat.
no. 83CH1919-0, IEEE, New York, 1983.

23. IEEE Computer Society Committee on Software Engineering, Software Engineer-
ing Terminology, 1979.

24. Randell W. Jensen and Charles C. Tonies, Software Engineering, Prentice-

Hall, Englewood Cliffs, New Jersey, 1979.

25. Brian W. Kernighan and P. J. Plauger, Software Tools, 1976.

26. Brian W. Kernighan and P. J. Plauger, Software Tools in Pascal, Addison-
Wesley, Reading, Massachusetts, 1981.

27. Arthur Laemmel, "Dillworth's Theorem and Program Testing," unpublished mem-
orandum, Polytechnic Institute of New York, Dec. 9, 1975.

28. Arthur Laemmel, "Notes on Digraphs and Programming," unpublished memorandum,
Polytechnic Institute of New York, August 1975.

29. Arthur Laemmel, "Testing Flow Charts with Loops," unpublished memorandum,
Polytechnic Institute of New York, December 10, 1975.

30. Arthur Laemmel, "A Statistical Theory of Computer Program Testing," Report
SRS119/POLY EE 80-004, Polytechnic Institute of New York, June 1980.

31. R. Linger, H. Mills, and B. Witt, Structured Programming Theory and Prac-
tice, 1979.

32. Thomas J. McCabe, Structured Testing, IEEE Computer Society, cat. no.
EH0200-6, IEEE, New York, 1983, 132 p.

20

33. Thomas J. McCabe and G. Gordon Schulmeyer, "System Testing Aided by Struc-
tured Analysis (A Practical Experience)," IEKE COM.PSAC Proceedings, 1982,
November 10-12, Chicago, Illinois.

34. S. N. 1.ohanty, "Automatic Program Testing," Ph.D. thesis, Polytechnic Insti-
tute of New York, Department of Electrical Engineering and Computer Science,
June 1976.

35. John D. Musa, "Validity of Execution-Time Theory of Software Reliability,"
IEEE Transactions on Reliability, vol R-28, no. 3, August 1979.

36. Glenford J. Myers, "An Extension to the Cyclomatic Measure of Program Com-
plexity," SIGPLAN Notices, October 1977.

37. Glenford J. Myers, The Art of Software Testing, Wiley, New York, 1979.

38. G. S. Popkin and Martin L. Shooman, "On the Number of Tests Necessary to
Verify a Computer Program," Report SRS-Il3/Poly EE 78-047, Polytechnic
Institute of New York, June 1978.

39. Proceedings of the 1975 International Conference on Reliable Software, IEEE,
April, 1975.

40. Proceedings of the Symposium on Computer Software Engineering, Polytechnic
Press, New York, 1976.

41. Proceedings of the Software Quality Assurance Workshop, ACM SIGMETRICS,
November 1978.

42. Proceedings of the First (-Sixth) International Conference(s) on Software
Engineering, IEEE. Conference dates: September 1975, October 1976, May
1978, September 1979, September 1981, September 1982.

43. Wendy Rauch-Hinden, "Software Tools: New Ways to Chip So.:tware Into Shape,"
Data Communications, April 1982, pp 83-113.

. 44. Record 1973 IEEE Symposium on Computer Software Reliability, April 30, 1973.

45. Donald J. Reifer and Stephen Tratter, "A Glossary of Software Tools and
Techniques," Computer, July 1977.

46. J. Rubey, "Ouantitative Aspects of Software Validation," Int. Conf. Reliable
Software, IEEE, New York, 1975, p 246.

47. Randall Rustin, Debugging Techniques in Large Systems, Prentice Hall Inc.,
Englewood Cliffs, New Jersey, 1971.

48. A. L. Scherr, "Developing and Testing a Large Programming System, OS/360
Time Sharing Option," in etzel (1973).

49. Martin L. Shooman, "Analytic Generation of Test Data," unpublished memoran-
dum, Polytechnic Institute of New York, December 1974.

21

•%q . ° .4 . ..

"

* -, - -. .. * - - . .*.
'-

.
-

*
- ' ' ' ' v

' - .' " ' '-. . . . =. . . " - - .. " ".. .

50. Martin L. Shooman, "Analytic Models for Software Testing," unpublished mem-
orandum, Polytechnic Institute of New York, December 17, 1974.

51. Martin L. Shooman, "Meaning of Exhaustive Testing," Research Report EE/EP
74-O06/EER 105, January 2, 1974.

52. Martin L. Shooman and Morris Bolsky, "Types, Distribution, and Test and
Correction Times for Programming Errors," Proc. 1975 Int. Conf. Reliable
Software, IEEE, New York, cat. no. 75 CHO 940-7CSR, p 347.

53. Robert C. Tausworthe, Standardized Development of Computer Software,
Prentice Hall, Englewood Cliffs, New Jersey, Part 1, 1977, Part II, 1979.

54. Thomas A. Thayer, et al., Software Reliability, 1978.

55. U.S. Department of Commerce, National Bureau of Standards, "The Introduction
of Software Tools," NBS Special Publication 500-91, September 1982.

56. U.S. Department of Commerce, National Bureau of Standards, "Planning for

Software Validation, Verification, and Testing," NBS Special Publication
500-98, November, 1982.

57. Martin R. Woodward, et al., "A Measure of Control Flow Complexity in Program
Test," IEEE Trans. Software Eng., vol SE-5, no. 1, January 1977, p 981.

58. Marvin V. Zelkowitz, "Automatic Program Analysis and Evaluation," Proc. 2d
Int. Conf. Software Eng., IEEE, New York, October 1976.

22

Table 1. Test driver R&D program schedule and milestones

1983

1I I
TASK MAY JUN IJUL AUG SEP IOCT NOV DEC

II I I I III

1. PREPARE PLAN FOR PHASE 1 A

2. PREBIDDERS CONSULTANT A A
CONFERENCE

3. REVIEW MEETING WITH IA A
CONSULTANTS

4. CONDUCT LITERATURE SEARCHI A A

5. INTERVIEW EXPERTS A A

6. IDENTIFY SIGNIFICANT A A
PARAMETERS "

7. REVIEW AND FINALIZE I AA
MODELS

8. DETERMINE APPLICABILITY A
OF MODELS

9. DETERMINE LIMITATIONS OF A
MODELS

10. ANALYZE AND RECOMMEND
MODELS

11. PREPARE FINAL REPORT

LEGEND: START

A COMPLETE

PLANNED SLIP

23

I- a o Molo

lo 0W 441 01 44 0 .4 .4

'0 4 10 14 .~0 .4 4 .0 C6 0

5'04 4* so aU 44'4. 10

0 0

0.4 4) 14u4 o 0
44 'w 0 -4UO 4 U

1441~~b 44. 0.
4U 004 510

.4 U. Ul 6.- A 4 a..0 4 '4 00
0 1414

0. 00 0 4- 0. 04 5. U
'.4Uk a4 1441 0 4 0154

X 0 .0 P. V0 . 1 141 14 2 '6
13 0 .0 i 0. 0 ra- ,41 is IOU

0 5&4 41 '0 4 .00 0.095 0 41 .440
4 U4 0 . . 00 14 4.a

Me 0'0 0. 311 0 m C4) P4, .

.1. 44 0 .4 ISO S. d.- I 0I a4 .4 - IL

o a0 ha a ~ aa 4.4.4 o - '

o a~ *4 1. C 44 4 00 0 .4 '

04 1. 0.1 u4 1414o'4.4 .u '

'04 '1 40 . 4. 41 .0 0 00. CL 0. 14
'0 14 40 0 0 014a0

.04 a '0 0 e 0" 0 40 a 4IVs

00 44 8. -40 ?A* 41 O'-4

0 4 4) 441 0 0 044 14 4.

00 0~1 4' 1. .4). 0 w S. .. ') 0

to 08 a US40004 0

144 0 00& 0 It
0~ 34 w' *A'

0 4 I U . C', 1 -0 a 4
4.o 1 0 '. 44 .40 -0 0

4414

4. 3 0 4.4 00 00 14'41
014 -A 41x-

cc's 4O 0"4 a'.

000 4 U .4 04 0 .12

440Q0 . .4 60 0L 0oo

R04 C4 :3t00 OU~. 05 MUV
4. a1, .0.4 .0 0 3

:1 91 414.04 'A'4
.0 0 406

-. 04 4 1 .4' 0141 06 .P '4 40. "A%44 v 0 0 0 a 4~ v a. CL40 8 00 .0 SM4.4 44.40 '4 C

u0

.. 0 6. 0 Cs '
C'41 . " 0 a0 0 0. 0 0' 4 14

44 0 0 ~ 44- .40 0 040

o ~go; 4.4 . . 0 0
(.3 00 .0 4 14.10 0 ~ 60 ~ . 4

44 6 0 4 .

LI~~~ s- 4 5 414 15' " 0 1.. j)
'0. 0 ~ ~ SW ... 40 4. 140

'00 0. 0 441 044 4)0 0A a0 :.~ 0&1 44 .4
) 0 0 "44 4.0' 0 Z 0%0.

14 U '4 .40. '4440 06 a '4) '.4v 4.4,
a4.4U -00 041 00 CO 4

43) 14 4to 14) .0 1- 40 44U

14)' .000. 5 U 4 .40404 U E 0-

~~ '494 0.414 44 40 4

0 0

'4 141 445 '

41 14 '4U 04 1040 001 .. 4 140A

a44 0 CO61C14 v4itU)0.44t.C

400

24 4

GLOSSARY

ACAP: Assembly Code Analysis Program.

ACCEPTANCE TESTING: The validation of the system or program to the user require-
ments.

BACKTRACKING: Examining the error symptoms to see where they were first noticed
and then backstepping in the program flow of control to a point where the symp-
toms have disappeared.

BIG BANG TESTING: When all modules have been individually coded and are sub-
mitted to integration testing without prior unit testing.

BUILD: A version of a program incorporating a subset of the required features.
Software goes through many builds as it evolves in a project.

CERTIFICATION: An authorative endorsement of the program. Testing for certifi-
cation must be done against some predefined standard.

CLASSIC SOFTWARE DEVELOPMENT: Development which has proceeded bottom-up in
design, coding, and testing.

CODE READING: The reading of a program, by another programmer other than the
designer, with the purpose of finding errors.

CONFIGURATION CONTROL: The strict control of the source code of a program under
development. The controller, called the configuration manager, keeps the off i-
cial copy of the program. Changes or corrections can only be made on written

request to the configuration manager (and the configuration control board).

CONFIGURATION MANAGEMENT: See Configuration Control.

COVER: A set of tests which cover (exercise) all instructions in a program.
Might also mean a set of tests which exercise all control paths or flows in a
program.

CYCLOMATIC NUMBER: For a control graph, the cyclomatic complexity number can be
calculated by taking the number of edges (branches), subtract the number of ver-
tices (nodes), and add unity.

DEBUGGING: The activity of diagnosing the precise nature of a known error and
then the correcting of the error.

DEDUCTIVE DEBUGGING: Process begins by enumerating all causes or hypotheses
which seem possible, then one by one, particular causes are ruled out until a
single one remains for validation.

DESIGN REVIEWS: Formal meetings held by the project director for his representa-
tive, other professionals, and at times the customer's representative, to review
in detail the progress of the project.

25

DESK QIECKING: See Code Reading.

DoD: Department of Defense.

ENHANCEMENT: The redesign of a significant portion of the software to provide
additional, improved, or changed functions. Sometimes enhancement is wrongly
classified as maintenance.

EXTERNAL FUNCTION TESTING: The verification of the external system as stated in
the external specifications.

EYEBALLING: See Code Reading.

FIELD TESTING: The initial operation of the actual hardware or software system
in the field in a test mode (limited or full capabilities) to ferret out as many
errors as is feasible.

HAND EXECUTION: See Code Reading.

HOS: Higher order systems.

INDUCTIVE DEBUGGING: Approach comes from the formulation of a single working
hypothesis based on the data, on the analysis of existing data, and on specially
collected data to prove or disprove the working hypothesis.

INSTALLATION TESTING: The validation of each particular installation of the
system with the intent of pointing out errors made while installing the system.

INTEGRATION TESTING: The verification of the interfaces among system parts kmod-
ules, components, and subsystems). Tests are performed which exercise interfaces
among program modules.

JCAP: JOVIAL Code Analysis Program.

MAINTENANCE: The support of operational software through documentation of errors
discovered in the field, generation of work around procedures, correction of
errors (where appropriate), and installation of very minor changes and additions
to the code (see Enhancement).

MFLOPS: Millions of floating point operations per second.

MILESTONE: A significant event in a PERT project management chart.

MIPS: Millions of instructions per second.

MODERN SOFTWARE DEVELOPMENT: Development which has proceeded topdown in design,
coding and testing.

MODIFIED TOP-DOWN TESTING: While integration testing of the control structure is
in progress the critical module is being exercised with a test driver program.

26

MODULE TESTING or UNIT TESTING: The verification of a single program module,

usually in an isolated environment (i.e., isolated from all other modules).

MSAT: Multi-Language Static Analysis Tool.

PATH: A sequence of edges which when traversed in the arrow direction form a
connection from the start vertex to the stop vertex.

PATH TEST: The traversal of a path.

PDL: Program design language.

PERT: Program Evaluation and Review Technique. A diagram (flow graph like)
which includes milestones, events, and paths between them. A PERT diagram is
used to document and manage program progress.

PROGRAM PATH: A graph that includes only a single traversal of any loops which
are encountered.

PROOF: An attempt to find errors in a program without regard to the program's
environment.

PSEUDO-CODE: A program design representation technique composed of a mixture of
English language statements, generic programming statements, and a few statements
specific to the chosen programing language. The purpose is to produce a sort of
pidgen English" which presses the main features of the design at a high level.

REGRESSION TESTING: Repetition, in whole or in part, of testing after an error
has been discovered and a correction has been made.

SANDWICH TESTING: Top-down and bottom-up approach to testing, working from both
ends toward the middle. Used if there is more than one critical module or if the
critical module is totally persuasive.

SIMULATION TESTING: The exercise of the software in conjunction with a simula-
tion program and often some peripheral hardware which replicate the real operat-
Ing environment as closely as possible. The computer used to run the software
and the simulation program may be the computer to be used in the field or a de-
velopment computer.

SOFTWARE RELIABILITY: The probability that a program will perform it's intended

task for a certain period without causing a system failure.

SQA: Software Quality Assurance.

SREM: Software Requirement Engineering Methodology.

STRONGLY CONNECTED GRAPH: A graph in which each node in the graph can be reached
from any other node.

SYMBOLIC TESTING: An analysis technique which derives a symbolic expression for
every path of the program.

27

SYSTEM INTEGRATION: The process by which individual modules are put together to
realize major subsections and functions of a program.

SYSTEH TESTING: The verification and/or validation of the system to its initial
objectives. System testing is a verification process when it is done in a simu-
lated environment; it is a validation process when it is performed in a live
environment.

TCAT: Test Coverage Analysis Tool.

TEST DRIVERS: A simulated program which passes data to the module under test and
receives data which the module has processed. Input data or code used to check
if the software meets the requirements and does its intended function. Needed in
a bottom-up coded program.

TESTING: The process of executing (or evaluating) a program (or part of a pro-
gram) with the intention or goal of finding errors. The activity of finding
errors.

TEST STUBS: Output statements for each module within the control structure to
indicate that control has passed through the module during the tests of the con-
trol structure. Needed in a top-down coded program.

VALIDATION: An attempt to find errors by executing a program in a given real
environment.

VERIFICATION: An attempt to find errors by executing a program in a test or
simulated environment.

WALKTHROUGH: An informal design review held by a lead programmer and some of his
staff to explore any design or coding errors which may exist.

28

4

DISTRIBUTION LIST

Commander
Armament Research and Development Center

U.S. Army Armament, Munitions and

Chemical Command
ATTN: DRSNC-TSS(D) (5)

DRSMC-GCL(D)
DRSMC-LC(D), J. Lepore

DRSMC-LCA(D), A. Moss
DRSC-LCE(D), R. Walker

DRSMC-QAF-I(D) (10)

DRSMC-QAS(D), B. Aronowitz (5)

DRSMC-OAS-A(D), Paul E. Janusz (10)

DRSMC-QAS-A(D), William R. Turoczy (10)

DRSMC-SCM(D), J. D. Corrie

DRSMC-SCM-O(D), H. Pebly, Jr.

DRSMC-TSP(D), B. Stephans

Dover, NJ 07801-5001

Administrator
Defense Technical Information Center

ATTN: Accessions Division (12)

Cameron Station
Alexandria, VA 22314

Director
U.S. Army Materiel Systems Analysis

Activity
ATTN: DRXSY-MP
Aberdeen Proving Ground, MID 21005

Commander/Director
Chemical Research and Development Center

U.S. Army Armament, Munitions and

Chemical Command
ATTN: DRSMC-CLJ-L(A)

DRSMC-CLB-PA(A)

DRSMC-OAC-E(A), W. J. Maurits

APG, Edgewood Area, HD 21010

Director
Ballistics Research Laboratory
ATTN: DRXBR-OD-ST

Aberdeen Proving Ground, MD 21005

29

Chief
Benet Weapons Laboratory, LCWSL
Armament Research and Development Center
U.S. Army Armament, Munitions and

Chemical Command
ATTN: DRSMC-LCB-TL

DRSMC-LCB, T. Moraczewski
SARWV-PPI, L. Jette

Watervliet, NY 12189

Commander
U.S. Army Armament, Munitions and

Chemical Command
ATTN: DRSMC-LEP-L(R)

DRSMC-EN(R)
DRSMC-QA(R) (2)
DRSMC-QAE (R)
DRSMC-RDP(R)
DRSMC-SC(R)

Rock Island, IL 61299

Director
U.S. Army TRADOC Systems

Analysis Activity
ATTN: ATAA-SL
White Sands Missile Range, NH 88002

Director
U.S. Army Materials and Mechanics Research Center
ATTN: DRXMR-D

DRXHR-P
DRXMR-PL (2)
DRXMR-S
DRXMR-STO (4)

Watertown, MA 02172

Commander
U.S. Army Foreign Science and Technology

Center
ATTN: DRXST-SD3
220 Seventh Street, N.E.
Charlottesville, VA 22901

Office of the Deputy Chief of Staff for
Research, Development, and Acquisition

ATTN: DAMA-ARZ-E

DAMA-CSS
Washington, DC 30210

30

.

Commander
Army Research Office
ATTN: George Mayer

J. 3. Murray
P.O. Box 1211
Research Triangle Park, NC 27709

Commander
U.S. Army Materiel Development

and Readiness Command
ATTN: DRCDE-D

DRCDMD-FT
DRCLDC
DRCMH-M
DRCW
DRCQA-E
DRCOA-P

5001 Eisenhower Avenue
Alexandria, VA 22333

Commander
U.S. Army Electronics Research and

Development Command
ATTN: DRSEL-PA-E, Stan Alster

J. Quinn
Fort Monmouth, NJ 07703

Commander -
U.S. Army Missile Command
ATTN: DRSMI-EAT, R. Talley

DRSMI-ET, Robert 0. Black
DRSMI-H
DRSMI-QP
DRSMI-QS, George L. Stewart, Jr.
DRSMI-TB (2)
DRSMI-TK, J. Alley

Redstone Arsenal, AL 35809

Commander
U.S. Army Troop Support and Aviation

Materiel Readiness Command ..

ATTN: DRSTS-M
DRSTS-PLE, J. Corwin (2)
DRSTS-Q

4300 Goodfellow Boulevard
St. Louis, MO 63120

Commander
U.S. Army Natick Research and

Development Command

ATTN: DRDNA-EM
Natick, HA 01760

31

L "

Commander
U.S. Army Mobility Equipment Research

and Development Command
ATTN: DRDMK-D

DRDMK-E
DRD!HE-G
DRDMK-R
DRDI'E-M
DRDME-N
DRDHE-T
DRDWf-TQ
DRDME-V
DRDtE-ZE

Fort Belvoir, VA 22060

Commander
U.S. Army Tank-Automotive Materiel

Readiness Command
ATTN: DRSTA-Q (2)
Warren, MI 48090

Commander
Rock Island Arsenal
ATTN: SARRI-EN, W. M. Kisner

SARRI-ENM, W. D. McHenry
SARRI-QA

Rock Island, IL 61299

Commander
1U.S. Army Aviation Research and

Development Command
ATTN: DRDAV-EXT

DRDAV-QE
DRDAV-QP
DRDAV-QR

St. Louis, HOJ 63120

Commander
U.S. Army Tank-Automotive Research

and Development Command
ATTN: DRDTA-JA, C. Kedzior

DRDTA-RCKM, S. Goodman
DRDTA-RCKT, J. Fix
DRDTA-RTAS, S. Catalano
DRDTA-TTM, W. Moncrief
DRDTA-UL, Technical Library
DRDTA-ZE, 0. Renius

Warren, 111 48090

32

- -'------ - * I. I*E - - - -- °

Commander
Harry Diamond Laboratories
ATTN: DELHD-EDE, B. F. Willis
2800 Powder Mill Road
Adelphi, MD 20783

Commander
U.S. Army Test and Evaluation Command
ATTN: DRSTE-NE

DRSTE-TD
Aberdeen Proving Ground, MD 21005

Commander
U.S. Army White Sands Missile Range
ATTN: STEWS-AD-L

STEWS-ID
STEWS-TD-PM

White Sands Missile Range, NM 88002

Commander
U.S. Army Yuma Proving Ground
ATTN: Technical Library
Yuma, AZ 85364

Commander
U.S. Army Tropic Test Center
ATTN: STETC-TD, Drawer 942
Fort Clayton, Canal Zone

Commander
Aberdeen Proving Ground
ATTN: STEAM-MT-M, J. A. Feroli

STEAP-MT
STEAP-MTr-G, R. L. Huddleston

Aberdeen, MD 21005

Commander
U.S. Army Cold Region Test Center
ATTN: STECR-OP-PM
APO Seattle 98733

Commander
U.S. Army Dugway Proving Ground
ATTN: STE DP-Mr
Dugway, UT 84022

Commander
U.S. Army Electronic Proving Ground
ATTN: STEEP-Hr
Fort Huachuca, AZ 35613

33

Commander
Jefferson Proving Ground
ATTN: STEJP-TD-I
Madison, IN 47250

Commander
U.S. Army Aircraft Development Test Activity
ATTN: STE BG-TD
Fort Rucker, AL 36362

President
U.S. Army Armor and Engineer Board

*ATTN: ATZKOAE-TA
Fort Knox, KY 40121

President
U.S. Army Field Artillery Board
ATTN: ATZR-BDOP
Fort Sill, OK 73503

Commander
Anniston Army Depot
ATTN: SDSAN-QA
Anniston, AL 36202

Commander
Corpus Christi Army Depot
ATTN: SDSCC-MF.E, Mr. Haggerty,

(Mail Stop 55)
Corpus Christi, TX 78419

Commander
Letterkenny Army Depot
ATTN: SDSLE-QA
Chambersburg, PA 17201

Commander
Lexington-Bluegrass Army Depot
ATTN: SDSLX-OA
Lexington, KY 40507

Commander
New Cumberland Army Depot
ATTN: SDSNC-QA
New Cumberland, PA 17070

Commander
U.S. Army Depot Activity
ATTN: SDSTE-PU-O (2)
Pueblo, CO 81001

34

Commander
Red River Army Depot
ATTN: SDSRR-QA
Texarkana, TX 75501

Commander
Sacramento Army Depot
ATTN: SDSSA-QA
Sacramento, CA 95813

Commander
Savanna Army Depot Activity
ATTN: SDSSV-S
Savanna, IL 61074

Commander
Seneca Army Depot
ATTN: SDSSE-R
Romulus, NY 14541

Commander
Sharpe Army Depot
ATTN: SDSSH-QE
Lathrop, CA 95330

Commander
Sierra Army Depot
ATTN: SDSSI-DQA "

Herlong, CA 96113

Commander
Tobyhanna Army Depot
ATTN: SDSTO-Q
Tobyhanna, PA 18466

Commander
Tooele Army Depot
ATTN: SDSTE-QA
Tooele, UT 84074

Director
DARCO Ammunition Center
ATTN: SARAC-DE
Savanna, IL 61074

Naval Research Laboratory
ATTN: Code 5830, J. M. Krafft

Code 2620, Library
Washington, DC 20375

35

Air Force Materials Laboratory
Wright-Patterson Air Force Base
ATTN: AFML-LTM, W. Wheeler

AFML-LLP, R. Rovand
Wright-Patterson Air Force Base, OR 45433

DARCOM
*A.TTN: DRCQA, Mr. S. Lorber

DRCQA-E, Aida Estrella
Reba Gates

5001 Eisenhower Avenue
Alexandria, VA 22333

U.S. Army ANCCOM
ATTN: DRSMC-QAL, John Lipton
Rock Island, IL 61299

U.S. Army MICOM
* ATTN: DRSMI-QET, R. Kevin Preston

Redstone Arsenal, AL 35898

David Jenkins
Intern Training Center
Red River Army Depot
Bldg 468
Texarkana, TX 75507

U.S. Army CECOM
ATTN: DRSEL-PA-M, George Panagous

DRSEL-PA-RT, Paul Kogut
Ft. Monmouth, NJ 07703

Jeffrey Cook
U.S. Army Plant Representative off ice!
Hlughes Aircraft Corporation

Mesa Field Office
5000 E. McDonell
Mesa, AZ 85201

U.S. Army ERADCOM
ATTN: DRDELEW-ES-PA, Russell Langan
Ft. Monmouth, NJ 07703

U.S. Army AVSCOM
ATTN: DRDAV-QP, Daniel Whyte
St. Louis, MO 85201

36

gy0

k -. fOAw

